Phosphorylation-dependent block of cystic fibrosis transmembrane conductance regulator chloride channel by exogenous R domain protein.
نویسندگان
چکیده
The cystic fibrosis transmembrane conductance regulator (CFTR) constitutes a linear conductance chloride channel, which is regulated by cAMP-dependent protein kinase phosphorylation at multiple sites located in the intracellular regulatory (R) domain. Studies in a lipid bilayer system, reported here, provide evidence for the control of CFTR chloride channel by its R domain. The exogenous R domain protein (encoded by exon 13 plus 85 base pairs of exon 14) interacted specifically with the CFTR molecule and inhibited the chloride conductance in a phosphorylation-dependent manner. Only the unphosphorylated R domain protein blocked the CFTR channel. Such functional interaction suggests that the putative gating particle of the CFTR chloride channel resides in the R domain.
منابع مشابه
A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution.
Phosphorylation of the regulatory (R) domain initiates cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel activity. To discover how the function of this domain is determined by its structure, we produced an R domain protein (R8) that spanned residues 708-831 of CFTR. Phosphorylated, but not unphosphorylated, R8 stimulated activity of CFTR channels lacking this domain, indi...
متن کاملDomain-domain associations in cystic fibrosis transmembrane conductance regulator.
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR is a chloride channel whose activity requires protein kinase A-dependent phosphorylation of an intracellular regulatory domain (R-domain) and ATP hydrolysis at the nucleotide-binding domains (NBDs). To identify potential sites of domain-domain interaction within CFTR, we expressed...
متن کاملExpression and function of cystic fibrosis transmembrane conductance regulator in rat intrapulmonary arteries.
The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes a cyclic adenosine monophosphate (cAMP)-dependent chloride channel located mainly at the apical membrane of epithelial cells. In myocytes of pulmonary arteries, numerous chloride channels have been identified and described, but not the CFTR. Thus the presence and function of the CFTR was investigated in rat intrapulmona...
متن کاملNMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR.
The most common cystic fibrosis (CF)-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of Phe508 (DeltaF508) in the first of two nucleotide-binding domains (NBDs). Nucleotide binding and hydrolysis at the NBDs and phosphorylation of the regulatory (R) region are required for gating of CFTR chloride channel activity. We report NMR studies of wild-type...
متن کاملRegulation of activation and processing of the cystic fibrosis transmembrane conductance regulator (CFTR) by a complex electrostatic interaction between the regulatory domain and cytoplasmic loop 3.
BACKGROUND NEG2 regulates CFTR gating but the mechanism is unknown. RESULTS A putative NEG2-CL3 electrostatic attraction, possibly weakened by Arg-764/Arg-766 of the R domain, prohibited CFTR activation. A charge exchange between NEG2 and CL3 caused misprocessing. CONCLUSION Electrostatic regulation of CFTR activation and processing may be asymmetric at the CL3-R interface. SIGNIFICANCE T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 271 13 شماره
صفحات -
تاریخ انتشار 1996